
Embedded IDE Link™ 4
User’s Guide

For Use with Analog Devices™ VisualDSP++®

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Using Embedded IDE Link™ with Analog Devices™ VisualDSP++®

© COPYRIGHT 2007-2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 2007 Online only New for Version 1.0 (Release 2007a+)
September 2007 Online only Revised for Version 1.1 (Release 2007b)
March 2008 Online only Revised for Version 2.0 (Release 2008a)
October 2008 Online only Revised for Version 2.1 (Release 2008b)
March 2009 Online only Revised for Version 2.2 (Release 2009a)
September 2009 Online only Revised for Version 4.0 (Release 2009b)
March 2010 Online only Revised for Version 4.1 (Release 2010a)

Contents

Getting Started

1
Product Overview . 1-2

Software Structure and Components 1-4
Automation Interface . 1-4
Project Generator . 1-5
Verification . 1-5

Software Requirements . 1-6

Installation and Configuration . 1-7

Automation Interface

2
Getting Started with Automation Interface 2-2
Introducing the Automation Interface Tutorial 2-2
Running the Interactive Tutorial . 2-5
Selecting Your Session and Processor 2-6
Querying Objects for VisualDSP++ IDE 2-7
Loading Files into VisualDSP++ IDE 2-9
Running the Project . 2-11
Working with Global Variables and Memory 2-12
Working with Local Variables and Memory 2-13
Closing Files and Projects . 2-16
Closing the Connections or Cleaning Up VisualDSP++
Software . 2-16

Tutorial Summary . 2-17

Constructing Objects . 2-18
Example — Constructor for adivdsp Objects 2-18

v

Properties and Property Values . 2-20
Setting and Retrieving Property Values 2-20
Setting Property Values Directly at Construction 2-21
Setting Property Values with set . 2-21
Retrieving Properties with get . 2-22
Direct Property Referencing to Set and Get Values 2-22
Overloaded Functions for adivdsp Objects 2-23

adivdsp Object Properties . 2-24
Quick Reference to adivdsp Properties 2-24
Details About adivdsp Object Properties 2-25

Project Generator

3
Introducing Project Generator . 3-2

Project Generator Tutorial . 3-3
Building the Model . 3-3
Adding the Target Preferences Block to Your Model 3-4
Specifying Simulink Configuration Parameters for Your
Model . 3-8

Model Reference . 3-11
How Model Reference Works . 3-11
Using Model Reference . 3-12
Configuring Targets to Use Model Reference 3-14

Block Reference

4
Block Library: idelinklib_adivdsp 4-2

vi Contents

Blocks — Alphabetical List

5

Reported Limitations and Tips

A
Reported Issues . A-2
Using 64-bit Symbols in a 64-bit Memory Section on SHARC
Processors . A-2

Supported Processors

B
Supported Platforms . B-2
Product Features Supported by Each Processor or
Family . B-2

Supported Processors and Simulators B-2
Custom Board Support . B-3

Index

vii

viii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Software Structure and Components” on page 1-4

• “Software Requirements” on page 1-6

• “Installation and Configuration” on page 1-7

1 Getting Started

Product Overview
Embedded IDE Link™ software provides a connection between MATLAB® and
the VisualDSP++® IDE to enable you to access the processor from MATLAB.
You can, manipulate data on the processor, and manage projects within the
IDE, while simultaneously utilizing the MATLAB tools of numerical analysis
and simulation. Using Embedded IDE Link software, you can perform the
following tasks, and others related to Model-Based Design:

• Function calls — Write scripts in MATLAB software to execute any
function in the VisualDSP++ IDE

• Automation — Write automated tests in MATLAB software to be executed
on your processor, including control and verification operations

• Host-Processor Communication — Communicate with the processor
directly from MATLAB software, without going to the IDE

• Verification and Validation

- Load and execute projects into the VisualDSP++ IDE from the MATLAB
command line

- Build and compile code, and then use vectors of test data and parameters
to test the code

- Build and compile your code, and then download the code to the
processor and execute it

• Design models — Design models and algorithms in MATLAB and
Simulink® software and run them on the processor

• Generate code— Generate executable code for your processor directly from
the models designed in Simulink software, and execute it

Embedded IDE Link software connects MATLAB software and Simulink
software with Analog Devices™ VisualDSP++® integrated development
and debugging environment from Analog Devices™. Embedded IDE Link
software enables you to use MATLAB and Simulink software to debug and
verify embedded code running on all Analog Devices DSPs that VisualDSP++
software supports, such as the Analog Devices™ Blackfin®, Analog Devices™

SHARC® and Analog Devices™ TigerSHARC® processor families.

1-2

Product Overview

Embedded IDE Link software includes a project generator component. With
the project generator component, you can generate a complete project for the
VisualDSP++ IDE from your Simulink software models, including ANSI®

C code generated with Real-Time Workshop® software. Thus, you use the
Real-Time Workshop and Real-Time Workshop® Embedded Coder™ software
to generate generic ANSI C code projects for VisualDSP++ software from
models. You can then build and run these projects on Blackfin®, SHARC®,
and TigerSHARC® processors.

The following list suggests some of the uses for the capabilities of the software:

• Create test benches in MATLAB and Simulink software for testing your
manually written or automatically generated code running on ADI DSPs

• Generate code and project files for VisualDSP++ software from Simulink
models for rapid prototyping or deployment of a system or application

• Build, debug, and verify embedded code on ADI DSPs

• Perform processor-in-the-loop (PIL) testing of embedded code

1-3

1 Getting Started

Software Structure and Components

In this section...

“Automation Interface” on page 1-4

“Project Generator” on page 1-5

“Verification” on page 1-5

Embedded IDE Link software comprises components—the Automation
Interface component, the Project Generation component, and the Verification
component. The Automation Interface component enables communication
between MATLAB software and Embedded IDE Link software. The Project
Generation component leverages Simulink software and lets you build models,
simulate them, and generate code from the models directly to the processor.

The Verification component offers capabilities that help you use Model-Based
Design to validate and verify your projects. With the Verification component,
you can simulate algorithms and processes in Simulink models and
concurrently on your processor. Comparing the results helps verify the
fidelity of you model or algorithm code.

Automation Interface
The Automation Interface component allows you to use Embedded IDE Link
functions and methods to communicate with the VisualDSP++ IDE to perform
the following tasks:

• Automate project management

• Debug programs

• Manipulate the data in the processor internal and external memory, and
in the registers

• Communicate between the host and processor applications

The Debug Component of automation interface includes methods and
functions for project automation, debugging, and data manipulation.

1-4

Software Structure and Components

Project Generator
The Project Generator component comprises methods that utilize the
VisualDSP++ API to create projects in VisualDSP++ software and generate
code with Real-Time Workshop and Real-Time Workshop Embedded Coder
software. With the interface, you can do the following:

• Automatic project-based build process — Automatically create and build
projects for code generated by Real-Time Workshop or Real-Time Workshop
Embedded Coder software.

• Custom code generation — Use Embedded IDE Link software with
any Real-Time Workshop System Target File (STF) to generate
processor-specific and optimized code.

• Automatic downloading and debugging — Debug generated code in the
VisualDSP++ debugger, using either the instruction set simulator or real
hardware.

• Create and build projects for VisualDSP++ software from Simulink models
— Project Generator uses Real-Time Workshop or Real-Time Workshop
Embedded Coder software to build projects that work with Analog Devices
processors.

• Generate custom code using the Configuration Parameters in your model
with the system target files vdsplink_ert.tlc and vdsplink_grt.tlc.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link software combine to
provide the following verification tools for you to apply as you develop your
code:

Processor-in-the-Loop Cosimulation
Use cosimulation techniques to verify generated code running in an
instruction set simulator or real hardware environment.

Task Execution and Stack Usage Profiling
Gather execution profiling measurements with VisualDSP++ instruction set
simulator to establish the timing requirements of your algorithm. Also, verify
the stack usage is appropriate and as expected.

1-5

1 Getting Started

Software Requirements
For detailed information about the software and hardware required to use
Embedded IDE Link software, refer to the Embedded IDE Link system
requirements areas on the MathWorks Web site:

• Requirements for Embedded IDE Link:
www.mathworks.com/products/ide-link/requirements.html

• Requirements for use with VisualDSP++:
www.mathworks.com/products/ide-link/adi-adaptor.html

1-6

http://www.mathworks.com/products/ide-link/requirements.html
http://www.mathworks.com/products/ide-link/adi-adaptor.html

Installation and Configuration

Installation and Configuration
1 Install VisualDSP++ according to the instructions provided with that
software.

2 Enter adivdspsetup on the MATLAB command line.

3 Use Browse to locate the system folder for Analog Devices VisualDSP++.
This action registers the Embedded IDE Link with that IDE.

4 Confirm that the installation works by entering IDE_Obj = adivdsp on
the MATLAB command line. This action creates an IDE handle object for
VisualDSP++ in MATLAB, and starts VisualDSP++.

1-7

1 Getting Started

1-8

2

Automation Interface

• “Getting Started with Automation Interface” on page 2-2

• “Constructing Objects” on page 2-18

• “Properties and Property Values” on page 2-20

• “adivdsp Object Properties” on page 2-24

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Automation Interface Tutorial” on page 2-2

“Running the Interactive Tutorial” on page 2-5

“Selecting Your Session and Processor” on page 2-6

“Querying Objects for VisualDSP++ IDE” on page 2-7

“Loading Files into VisualDSP++ IDE” on page 2-9

“Running the Project” on page 2-11

“Working with Global Variables and Memory ” on page 2-12

“Working with Local Variables and Memory” on page 2-13

“Closing Files and Projects” on page 2-16

“Closing the Connections or Cleaning Up VisualDSP++ Software” on page
2-16

“Tutorial Summary” on page 2-17

Introducing the Automation Interface Tutorial
Embedded IDE Link software provides a connection between MATLAB
software and a processor in VisualDSP++ software. You can use objects as a
mechanism to control and manipulate a signal processing application using
the computational power of MATLAB software. This approach can help you
while you debug and develop your application. Another possible use for
automation is creating MATLAB scripts that verify and test algorithms that
run in their final implementation on your production processor.

Note Before using the functions available with the objects, you must select
a session in the VisualDSP++ IDE. The object you create is specific to a
designated session in VisualDSP++ IDE.

To get you started using objects for VisualDSP++ software, Embedded IDE
Link software includes an example script vdspautointtutorial.m. As you

2-2

Getting Started with Automation Interface

work through this tutorial, you perform the following tasks that step you
through creating and using objects for VisualDSP++ IDE.

1 Select your session.

2 Create and query objects to VisualDSP++ IDE.

3 Use MATLAB software to load files into VisualDSP++ software IDE.

4 Work with your VisualDSP++ IDE project from MATLAB software.

5 Close the connections you opened to VisualDSP++ IDE.

You use these tasks in any development work you do with signal processing
applications. Thus, the tutorial provided here gives you a working process
and best practice for using Embedded IDE Link software and your signal
processing programs to develop programs for a range of Analog Devices
processors.

The tutorial covers some methods and functions for Embedded IDE Link
software. The functions listed first do not require an adivdsp object. The
functions listed after that require an existing adivdsp object before you can
use the function syntax.

Functions for Working with VisualDSP++ Software
The following table shows functions that do not require an object.

Function Description

listsessions Return information about the boards that
VisualDSP++ IDE recognizes as installed on
your PC.

adivdsp Construct an object that refers to a VisualDSP++
IDE session. When you construct the object you
specify the session by processor.

2-3

2 Automation Interface

Methods for Working with adivdsp Objects in VisualDSP++
Software
The following table presents some of the methods that require an adivdsp
object.

Methods Description

add Add a file to a project

address Return the address and page for an entry in the
symbol table in VisualDSP++ IDE

build Build the project in VisualDSP++ software

cd Change the working directory

display Display the properties of an object that references
a VisualDSP++ software session

halt Terminate execution of a process running on the
processor

info Return information about the object or session

isrunning Test whether the processor is executing a process

load Load a built project to the processor

open Open a file in the project

read Retrieve data from memory on the processor

reset Restore the program counter (PC) to the entry
point for the current program

run Execute the program loaded on the processor

save Save files or projects

visible Set whether VisualDSP++ IDE window is visible
on the desktop while VisualDSP++ IDE is
running

write Write data to memory on the processor

2-4

Getting Started with Automation Interface

Running VisualDSP++ Software on Your Desktop — Visibility
When you create an adivdsp object in the tutorial in the next section,
Embedded IDE Link starts VisualDSP++ software in the background.

If VisualDSP++ software is running in the background, it does not appear on
your desktop, in your task bar, or on the Applications page in the Task
Manager. It does appear as a process, idde.exe, on the Processes tab in
Task Manager.

You can make the VisualDSP++ IDE visible with the function visible.
The function isvisible returns the status of the IDE—is it visible on your
desktop. To close the IDE when it is not visible and MATLAB is not running,
use the Processes tab in WindowsWindows® Task Manager and look for
idde.exe.

If an object that refers to VisualDSP++ software exists when you close
VisualDSP++ software, the application does not close. Windows software
moves it to the background (it becomes invisible). Only after you clear
all objects that access VisualDSP++ IDE, or close MATLAB, does closing
VisualDSP++ unload the application. You can see if VisualDSP++ IDE is
running in the background by checking in the Windows Task Manager. When
VisualDSP++ IDE is running, the entry idde.exe appears in the Image
Name list on the Processes tab.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run vdspautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial
MATLAB file used here by clicking vdspautointtutorial.m.

2-5

2 Automation Interface

Note To run the interactive tutorial, you must have at least one session
configured in VisualDSP++ software. If you do not yet have a session, use
the Analog Devices VisualDSP++ Configurator to create a session to use for
this tutorial.

Selecting Your Session and Processor
Embedded IDE Link IDE requires that you have at least one session available
for VisualDSP++ software. To help you select the session to use for this
tutorial, and for any development work, Embedded IDE Link software
provides a command line tool, called listsessions, which prints a list of the
available sessions. So that you can use this function in a script, listsessions
can return a MATLAB structure that you use when you want your script to
select a session in the IDE without your help.

Note The session you select is used throughout the tutorial.

1 To see a list of the sessions that you can use, enter the following command
at the MATLAB prompt:

session_list = listsessions

MATLAB returns a list that shows all the sessions that Embedded IDE
Link IDE recognizes as available in your installation.

session_list =

'ADSP-21060 ADSP-2106x Simulator'
'ADSP-21362 ADSP-2136x Simulator'

2 listsessions has a verbose mode that provides further details about the
sessions in a cell array. The array contains structures that describe each
session—the target type, the platform, and the processor.

sessionsinfo = listsessions('verbose');

echo off

2-6

Getting Started with Automation Interface

sessionname: 'ADSP-21362 ADSP-2136x Simulator'
targettype: 'ADSP-2136x Family Simulator'

platformname: 'ADSP-2136x Simulator'
processors: 'ADSP-21362'

3 Use adivdsp to create an object that accesses a session in VisualDSP++
IDE.

IDE_Obj = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

Sessionname and procnum are property names that specify the property to
set. ADSP-21362 ADSP-2136x Simulator is the session to access, and 0 is
the number of the processor to refer to in the session.

When you use adivdsp, you create an object, in this case IDE_Obj, that
refers to the session you specify in sessionname.

Querying Objects for VisualDSP++ IDE
In this tutorial section you create the connection between MATLAB and
VisualDSP++ IDE. This connection, or object, is a MATLAB object, which for
this session you save as variable IDE_Obj. You use function adivdsp to create
objects. When you create objects, adivdsp input arguments let you define
other object properties, such as the global time-out. Refer to the adivdsp
reference information for more about the input arguments.

Use the generated object IDE_Obj to direct actions to your session processor.
In the following tasks, IDE_Obj appears in all function syntax that interact
with IDE session and the processor: The object IDE_Obj identifies and refers
to a specific session. You need to include the object in any method syntax you
use to access and manipulate a project or files in a session in VisualDSP++
IDE.

1 Create an object that refers to your selected session and processor. Enter
the following command at the prompt.

IDE_Obj = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

If you watch closely, and your machine is not too fast, you see VisualDSP++
software appear briefly when you call adivdsp. If VisualDSP++ was not

2-7

2 Automation Interface

running before you created the new object, VisualDSP++ software starts
and runs in the background.

Usually, you need to interact with VisualDSP++ while you develop your
application. The function visible, controls the state of VisualDSP++
software on your desktop. visible accepts Boolean inputs that make
VisualDSP++ software either visible on your desktop (input to visible ≥ 1)
or invisible on your desktop (input to visible = 0). For this tutorial, you
need to interact with the development environment, so use visible to
set the IDE visibility to 1.

2 To make VisualDSP++ IDE show on your desktop, enter the following
command at the prompt:

visible(IDE_Obj,1)

3 Next, enter display(IDE_Obj) at the prompt to see the status information.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362
Processor number : 0
Default timeout : 10.00 secs

Embedded IDE Link software provides three methods to read the status of
a processor:

• info— Return a structure of testable session conditions.

• display— Print information about the session and processor.

• isrunning— Return the state (running or halted) of the processor.

4 Type procinfo = info(IDE_Obj).

The IDE_Obj link status information provides data about the hardware, as
follows:

procinfo =

procname: 'ADSP-21362'
proctype: 'ADSP-21362'

2-8

Getting Started with Automation Interface

revision: ''

5 Verify that the processor is running by entering

runstatus = isrunning(IDE_Obj)

MATLAB responds, indicating that the processor is stopped, as follows:

runstatus =

0

Loading Files into VisualDSP++ IDE
In this part of the tutorial, you load the executable code for the CPU in
the IDE. Embedded IDE Link software includes a tutorial project file for
VisualDSP++ IDE. Through the next commands in the tutorial, you locate
the tutorial project file and load it into VisualDSP++ IDE. The open method
directs VisualDSP++ software to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a directory to
which you have write access. Embedded IDE Link software cannot create
a directory for you. If you do not have a writable directory, create one in
Windows software before you proceed with the rest of this tutorial.

VisualDSP++ software has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. The next steps change the working
directory to your new writable directory.

1 Use cd to switch to the writable directory

prj_dir = cd('C:\vdsp_demo')

where the name and path to the writable directory is a string, such as
C:\vdsp_demo as used in the example. Replace C:\vdsp_demo with the
full path to your directory.

2-9

2 Automation Interface

2 Change your working directory to the new directory by entering the
following command:

cd(IDE_Obj,prj_dir)

3 Next, use the following command to create a new VisualDSP++ software
project named dot_product_c.dpj in the new directory:

new(IDE_Obj,'debug_demo.dpj')

Look in the IDE to verify that your new project exists. Next you need to
add source files to your project.

4 Add the provided source file—scalarprod.c to the project debug_demo.dpj
using the following command:

add(IDE_Obj, [matlabroot '\toolbox\vdsplink\vdspdemos\src\scalarprod.c'])

The variable matlabroot indicates the root directory of your MATLAB
installation. Replace matlabroot with the path to MATLAB on your
machine. For more information about the MATLAB root directory, refer
to matlabroot in the MATLAB documentation.

5 Open the file in the IDE from MATLAB by issuing the following command
to open the file:

open(IDE_Obj,[matlabroot '\toolbox\vdsplink\vdspdemos\src\scalarprod.c'])

Switch to the IDE to verify that the files are in your project and open.

6 Save your project.

save(IDE_Obj,'debug_demo.dpj','project')

Your IDE project is saved with the name debug_demo.dpj in your writable
directory. The input string ’project’ specifies that you are saving a project
file.

2-10

Getting Started with Automation Interface

Running the Project
After you create dot_project_c.dpj in the IDE, you can use Embedded IDE
Link functions to create executable code from the project and load the code
to the processor.

The next steps in this tutorial build the executable and download and run
it on your processor.

1 Use the following build command to build an executable module from the
project dot_product_c.dpj.

build(IDE_Obj,30) % The optional input argument 30 sets the time out period to 30 seconds.

At the end of the build process, Embedded IDE Link software returns a
value of 1 to indicate that the build succeeded. If the build process returns
a 0, the build failed.

ans =

1

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.dxe,
and it is stored with the project in your writable directory, in a subdirectory
named debug.

load(IDE_Obj,'c:\vdsp_demo\debug\debug_demo.dxe',30);

Embedded IDE Link software provides methods to control processor
execution—run, halt, and reset. To demonstrate these methods, use run to
start the program you loaded on the processor, and then use halt to stop
the processor.

Try the following methods at the command prompt.

run(IDE_Obj) % Start the program running on the processor.

halt(IDE_Obj) % Halt the processor.

reset(IDE_Obj) % Reset the program counter to start of program.

2-11

2 Automation Interface

Working with Global Variables and Memory
After you load your program on the processor, you can access memory locations
and variables. You can then read variables either from the program symbol
table or directly from addresses in memory. Three methods—address, read,
and write, let you get, read, and write to and from your project and processor.

Start by getting the address of the global variable v1 from the debug_demo
project symbol table.

1 Enter the following command to retrieve the address for v1.

address_v1 = address(IDE_Obj, 'v1')

address_v1 =

753666 1

2 Convert the address from decimal format to hexadecimal.

dec2hex(address_v1(1))

ans =

B8002

The address of global data array v1 is 0xB8002, which is stored in type
1 memory on the processor

3 With the address of v1 saved as address_v1, use read to return the data
from that location. To specify the data type and the number of values to
read, add the datatype (’int32’) and count (32) input arguments.

value_v1 = read(IDE_Obj, address_v1, 'int32', 32) % Interpret the data as 32-bit integers.

value_v1 =

Columns 1 through 10

-37 -133 31 -104 32 66 -123 19 140 -28

Columns 11 through 20

2-12

Getting Started with Automation Interface

16 80 -2 83 -243 148 56 163 46 45

Columns 21 through 30

-217 -11 -164 49 -3 99 21 -61 -26 101

Columns 31 through 32

-101 -151

4 Repeat the read process for another global variable in the project—v2. Nest
the address method inside the read method to reduce typing.

value_v2 = read(IDE_Obj,address(IDE_Obj,'v2'),'int32',32) % Read and address methods in one call.

value_v2 =

Columns 1 through 10

-50 5 -17 28 5 31 -23 -156 68 -5

Columns 11 through 20

-220 5 -14 57 214 183 213 40 175 144

Columns 21 through 30

-12 -77 -18 77 130 -39 132 107 52 -59

Columns 31 through 32

127 -117

Working with Local Variables and Memory
If you examine the source files for debug_demo in the IDE, you can verify the
values for v1 and v2 in the source file scalarprod.c. You can also use the
address method to get the addresses of local variables on the stack, after
the variable is in scope.

2-13

2 Automation Interface

To get the variables in scope (on the stack), you run the program. Adding
a breakpoint to the program allows you to read the stack contents when
the program stops at the breakpoint. Without the breakpoint, the program
runs to completion, and you cannot read the contents of the stack because it
no longer exists.

Begin the process by adding a breakpoint to the project file scalarprod.c:

1 Insert a breakpoint on line 100 of program scalarprod.c with the
following command:

insert(IDE_Obj, 'scalarprod.c', 100)

2 Run the program to add the variable to the stack, and move the program
counter to the breakpoint. Add the optional input argument timeout sets
the time out value to 30s instead of the default 20s value:

run(IDE_Obj,'runtohalt',30)

The program stops at the breakpoint on line 100.

3 Read the address of the local variable result, and convert it to its
hexadecimal equivalent value.

address_result = address(IDE_Obj,'result','local') % address_result is a 'local' variable.

address_result =

933884 1

dec2hex(address_result(1))

ans =

E3FFC

address returns 933884 as the location of result in memory, in type 1
memory on the processor, stored in the MATLAB variable address_result.

4 Use the variable address_result to get the value stored at that address by
issuing the following read command:

2-14

Getting Started with Automation Interface

actual_value_result = read(IDE_Obj, address_result, 'int32')

actual_value_result =

18875

Verify in the IDE Output Window that 18875 is the correct value for the
dot product.

5 Use the following command to remove the breakpoint set on line 100.

remove(IDE_Obj, 'scalarprod.c', 100)

MATLAB includes a dot product function to use to verify the value in
actual_value_result. Called dot, the function calculates the dot product of
two input vectors. In this case, the inputs are vectors value_v1 and value_v2.

Comparing the two results—expected_value_result in MATLAB with
actual_value_result from the processor implementation validates your
simulation and implementation. With Automation Interface methods,
you can create MATLAB file scripts to test and verify algorithms in their
implementation on a processor.

1 Calculate the expected result by performing the dot function with two
input vectors.

expected_value_result = dot(value_v1, value_v2)

expected_value_result =

18875

2 Test to see if the actual and expected results match.

isequal(expected_value_result, actual_value_result)

ans =

1

2-15

2 Automation Interface

3 After verifying the result and removing the breakpoint, run the program to
completion, and then halt and reset the processor.

run(IDE_Obj)
halt(IDE_Obj)
reset(IDE_Obj)

Closing Files and Projects
You can close files in your projects from the MATLAB command line. The
method close works at the command line to close programs or projects in the
IDE through the adivdsp object and input keywords that describe the kind of
file to close.

To finish this tutorial, close the open documents or files in the IDE, and then
close the project debug_demo.dpj.

1 Close all of the open files and documents in the IDE. All of the open files
are text files, so use the text input argument.

close(IDE_Obj, 'all', 'text')

2 Now, close the project.

close(IDE_Obj, 'debug_demo.dpj', 'project')

Note If you close the VisualDSP++ IDE manually outside of MATLAB, clear
the IDE handle object in MATLAB. For example, at the MATLAB command
line enter:

clear IDE_Obj

Closing the Connections or Cleaning Up VisualDSP++
Software
Objects that you create in Embedded IDE Link software have connections to
VisualDSP++ software. Until you delete these handles, the VisualDSP++
process (idde.exe in the Windows Task Manager) remains in memory.

2-16

Getting Started with Automation Interface

Closing MATLAB removes these objects automatically, but there may be times
when it helps to delete the handles manually, without quitting MATLAB.

Note When you clear the last adivdsp IDE handle object, Embedded IDE
Link software closes VisualDSP++ software. When it closes the IDE, the link
software does not save current projects or files in the IDE, and it does not
prompt you to save them. A best practice is to save all of your projects and
files before you clear adivdsp objects from your MATLAB workspace.

1 Use the following command to make the IDE invisible if it is visible on
your desktop.

visible(IDE_Obj.0)

2 To delete your connection to VisualDSP++ IDE, use clear IDE_Obj.

Tutorial Summary
During the tutorial you performed the following tasks:

1 Selected your session.

2 Created and queried objects that refer to a session in Embedded IDE Link
to get information about the session and processor.

3 Used MATLAB to load files into VisualDSP++ IDE, and used methods in
MATLAB to run that file.

4 Accessed variables in the program symbol table and on the processor.

5 Used the Automation Interface methods to compare the results of a
simulation in MATLAB with the same algorithm running on a processor.

6 Closed the files, projects, and connections you opened to VisualDSP++ IDE.

2-17

2 Automation Interface

Constructing Objects
When you create a connection to a session in VisualDSP++ software using the
adivdsp function, you create an object. The object implementation relies on
MATLAB object-oriented programming capabilities similar to the objects you
find in MATLAB or Filter Design Toolbox.

The discussions in this section apply to the objects in Embedded IDE
Link software. Because adivdsp objects use the MATLAB programming
techniques, the information about working with the objects, such as how
you get or set properties, or use methods, apply to the objects you create in
Embedded IDE Link software.

Like other MATLAB structures, objects in Embedded IDE Link software have
predefined fields referred to as object properties.

You specify object property values by one of the following methods:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to “Setting Property Values
with set.”

Example — Constructor for adivdsp Objects
The easiest way to create an object is to use the function adivdsp to create an
object with the default properties. Create an object named IDE_Obj referring
to a session in VisualDSP++ software by entering the following syntax:

IDE_Obj = adivdsp

MATLAB responds with a list of the properties of the object IDE_Obj you
created along with the associated default property values.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362

2-18

Constructing Objects

Processor number : 0
Default timeout : 10.00 secs

The object properties are described in the adivdsp documentation.

Note These properties are set to default values when you construct links.

2-19

2 Automation Interface

Properties and Property Values

In this section...

“Setting and Retrieving Property Values” on page 2-20

“Setting Property Values Directly at Construction” on page 2-21

“Setting Property Values with set” on page 2-21

“Retrieving Properties with get” on page 2-22

“Direct Property Referencing to Set and Get Values” on page 2-22

“Overloaded Functions for adivdsp Objects” on page 2-23

Objects in this software have properties associated with them. Each property
is assigned a value. You can set the values of most properties, either when
you create the link or by changing the property value later. However, some
properties have read-only values. Also, a few property values, such as the
board number and the processor to which the link attaches, become read-only
after you create the object. You cannot change those after you create your link.

Setting and Retrieving Property Values
You can set adivdsp object property values by either of the following methods:

• Directly when you create the link — see “Setting Property Values Directly
at Construction”

• By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve Embedded IDE Link software object property values with the get
function.

Direct property referencing lets you either set or retrieve property values for
adivdsp objects.

2-20

Properties and Property Values

Setting Property Values Directly at Construction
To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
adivdsp:

• A string for the property name to set followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB.

• The associated property value. Sometimes this value is also a string.

Include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Object Property Values at Construction
Suppose that you want to create a link to a session in VisualDSP++ software
and set the following object properties:

• Refer to the specified session.

• Connect to the first processor.

• Set the global time-out to 5 s. The default is 10 s.

Set these properties by entering

IDE_Obj = adivdsp('sessionname','ADSP-21060 ADSP-2106x Simulator','procnum',0,'timeout',5);

The sessionname, procnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set
After you construct an object, the set function lets you modify its property
values.

Using the set function, you can change the value of any writable property
of an object.

2-21

2 Automation Interface

Example — Setting Object Property Values Using set
To set the time-out specification for the link IDE_Obj from the previous
section, enter the following syntax:

set(IDE_Obj,'timeout',8);

get(IDE_Obj,'timeout');
ans =

8

The display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve the value of an object property.

Example — Retrieving Object Property Values Using get
To retrieve the value of the sessionname property for vd2, and assign it to a
variable, enter the following syntax:

session = get(vd2,'sessionname')

session =

ADSP-21060 ADSP-2106x Simulator

Direct Property Referencing to Set and Get Values
You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Example — Direct Property Referencing in Links
To reference an object property value directly, perform the following steps:

1 Create a link with default values.

2 Change its time-out and number of open channels.

2-22

Properties and Property Values

IDE_Obj = adivdsp;
IDE_Obj.time = 6;

Overloaded Functions for adivdsp Objects
Several methods and functions in Embedded IDE Link software have the
same name as functions in other MathWorks™ products. These functions
behave similarly to their original counterparts, but you apply them to an
object. This concept of having functions with the same name operate on
different types of objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a complete list of the methods that act on adivdsp objects, refer to the in
the function reference pages.

2-23

2 Automation Interface

adivdsp Object Properties

In this section...

“Quick Reference to adivdsp Properties” on page 2-24

“Details About adivdsp Object Properties” on page 2-25

Embedded IDE Link software provides links to your processor hardware so
you can communicate with processors for which you are developing systems
and algorithms. Because Embedded IDE Link software uses objects to create
the links, the parameters you set are called properties and you treat them as
properties when you set them, retrieve them, or modify them.

This section details the properties for the objects for VisualDSP++ software.
First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

MATLAB users may find much of this handling of objects familiar. Objects in
Embedded IDE Link software behave like objects in MATLAB and the other
object-oriented toolbox products. C++ programmers may already understand
the concepts described in this section.

Quick Reference to adivdsp Properties
The following table lists the properties for the links in Embedded IDE Link
software. The second column indicates the object to which the property
belongs. Knowing which property belongs to each object tells you how to
access the property.

2-24

adivdsp Object Properties

Property
Name User Settable? Description

sessionname At construction
only

Reports the name of the session in
VisualDSP++ IDE that the object
references.

procnum At construction
only

Stores the number of the processor in
the session. If you have more than one
processor, this number identifies the
specific processor.

timeout Yes/default Contains the global time-out setting for
the link.

Some properties are read only. Thus, you cannot set the property value.
Other properties you can change at any time. If the entry in the User Settable
column is “At construction only”, you can set the property value only when
you create the object. Thereafter it is read only.

Details About adivdsp Object Properties
To use the objects for VisualDSP++ interface, set values for the following:

• sessionname— Specify the session with which the object interacts.

• procnum— Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— Specify the global time-out value. (Optional. Default is 10 s.)

Details of the properties associated with adivdsp objects appear in the
following sections, listed in alphabetical order by property name.

procnum
Property procnum identifies the processor referenced by an object for
Embedded IDE Link IDE. Use procnum to specify the processor you are
working with in the session specified by sessionname. The VisualDSP++
Configurator assigns a number to each processor installed in each session.
To determine the value of procnum for a processor, use listsessions or the
Configurator.

2-25

2 Automation Interface

To identify a processor, you need the sessionname and procnum values. For
sessions with one processor, procnum equals 0. VisualDSP++ IDE numbers
the processors on multiprocessor boards sequentially from 0 to the total
number of processors. For example, on a board with four processors, the
processors are numbered 0, 1, 2, and 3.

sessionname
Property sessionname identifies the session referenced by a Embedded IDE
Link software. When you create an object, you use sessionname to specify the
session you are intending to interact with. To get the value for sessionname,
use listsessions or the Analog Devices VisualDSP++ Configurator. The
Configurator utility assigns the name for each session available on your
system.

timeout
Property timeout specifies how long VisualDSP++ software waits for any
process to finish. You set the global time-out when you create an object for
a session in VisualDSP++ IDE. The default global time-out value 10 s. The
following example shows the timeout value for object vd2.

display(vd2)

ADIVDSP Object:
Session name : ADSP-21060 ADSP-2106x Simulator
Processor name : ADSP-21060
Processor type : ADSP-21060
Processor number : 0
Default timeout : 10.00 secs

2-26

3

Project Generator

• “Introducing Project Generator” on page 3-2

• “Project Generator Tutorial” on page 3-3

• “Model Reference” on page 3-11

3 Project Generator

Introducing Project Generator
Project generator provides the following features for developing projects and
generating code:

• Automated project building for VisualDSP++ software that lets you
create VisualDSP++ software projects from code generated by Real-Time
Workshop and Real-Time Workshop Embedded Coder software. Project
generator populates projects in the VisualDSP++ software development
environment.

• Blocks in the library idelinklib_adivdsp for controlling the scheduling
and timing in generated code.

• Highly configurable code generation using model configuration parameters
and target preferences block options.

• Capability to use Embedded IDE Link software with one of two system
target files to generate code specific to your processor.

• Highly configurable project build process.

• Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink software models to use the Project Generator
component, do one or both of the following tasks:

• Add a Target Preferences block from the idelinklib_adivdsp library
to the model.

• To use the asynchronous scheduler capability in Embedded IDE Link
software, add one or more hardware interrupt blocks or idle task block from
the idelinklib_adivdsp library.

The following sections describe the blockset and the blocks in it, the scheduler,
and the Project Generator component.

3-2

Project Generator Tutorial

Project Generator Tutorial

In this section...

“Building the Model” on page 3-3

“Adding the Target Preferences Block to Your Model” on page 3-4

“Specifying Simulink Configuration Parameters for Your Model” on page 3-8

In this tutorial you build a model and generate a project from the model into
VisualDSP++ IDE.

Note The model demonstrates project generation only. You cannot build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, Signal Processing Blockset™ blocks, and blocks from
other blocksets to create the model application.

2 Add the target preferences block from the Embedded IDE Link Target
Preferences library to your model. Verify and set the block parameters for
your hardware. In most cases, the default settings work fine.

3 Set the configuration parameters for your model, including the following
parameters:

• Solver parameters such as simulation start and solver options

• Real-Time Workshop software options such as processor configuration
and processor compiler selection

4 Generate your project.

5 Review your project in VisualDSP++ software.

Building the Model
To build the model for audio reverberation, follow these steps:

3-3

3 Project Generator

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Look for the Integer Delay block in the Discrete library of Simulink and
the Gain block in the Commonly Used Blocks library. Do not add the
Custom Board block at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
To configure your model to work with Analog Devices processors, add a target
preferences block to your model.

If you have Target Support Package™ software, check the list of supported
processors in the Simulink library browser for a pre-configured Target
Preferences block for your processor. For example:

3-4

Project Generator Tutorial

Otherwise, use the Target Preferences/Custom Board for ADI VisualDSP++
block, located in the idelinklib_adivdsp block library.

3-5

3 Project Generator

To configure the Target Preferences/Custom Board for ADI VisualDSP++ (the
“Custom Board”) block in your model:

1 Drag and drop the Custom Board block to your model as shown in the
following figure.

3-6

Project Generator Tutorial

2 Double-click the Custom Board block to open the block dialog box.

3 In the block dialog box, select your processor from the Processor list.

4 Verify the CPU clock value.

5 Select the session name from the Session name list. Verify that the
session processor matches the one you selected from the Processor list.

6 Review the settings on the Memory and Sections tabs to verify that they
are correct for the processor you selected.

7 Click OK to close the Target Preferences dialog box.

You have completed the model. Next, configure the model configuration
parameters to generate a project in VisualDSP++ IDE from your model.

3-7

3 Project Generator

Specifying Simulink Configuration Parameters for
Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

Setting Solver Options
After you have designed and implemented your digital signal processing model
in Simulink software, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link
software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists when you generate executable projects. When you use PIL,
use any setting on the Type and Solver lists.

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

3-8

Project Generator Tutorial

Setting Real-Time Workshop Software Options
To configure Real-Time Workshop software to use the correct processor files
and to compile and run your model executable file, you set the options in
the Real-Time Workshop category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the Real-Time Workshop
software options to generate code tailored for your DSP:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, click Browse to select the system target file for
Analog Devices processors—vdsplink_grt.tlc. It may already be the
selected target file.

Clicking Browse opens the System Target File Browser to allow you
to changes the system target file.

3 On the System Target File Browser, select the system target file
vdsplink_grt.tlc, and click OK to close the browser.

Setting Embedded IDE Link Options
After you set the Real-Time Workshop options for code generation, set the
options that apply to your Analog Devices processor.

1 Change the category on the Select tree to Hardware Implementation.

2 Verify that the Device type is the correct value for your processor—ADI
Blackfin, ADI SHARC, or ADI TigerSHARC.

3 From the Select tree, choose Embedded IDE Link to specify code
generation options that apply to the processor.

4 Under Code Generation, clear all of the options.

5 (optional) Under Link Automation, provide a name for the handle in
IDE handle name.

6 Set the following options in the dialog box under Project options:

• Set Project options to Custom.

• Set Compiler options string and Linker options string to blank.

3-9

3 Project Generator

7 Set the following Runtime options:

• Build action: Create_project.

• Interrupt overrun notification method: Print_message.

You have configured the Real-Time Workshop options that let you generate
a project for your processor. A few Real-Time Workshop categories on the
Select tree, such as Comments, Symbols, and Optimization do not require
configuration for use with Embedded IDE Link software. In some cases, you
may decide to set options in the other categories.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your Simulink and Real-Time
Workshop documentation for more information about setting the configuration
parameters.

Creating Your Project
After you set the configuration parameters and configure Real-Time
Workshop software to create the files you need, you direct the software to
create your project:

1 Click OK to close the Configuration Parameters dialog box.

2 Click Incremental Build () on the model toolbar to generate your project
into VisualDSP++ IDE.

When you click with Create_project selected for Build action, the
automatic build process starts VisualDSP++ software and populates a new
project in the development environment.

3-10

Model Reference

Model Reference

In this section...

“How Model Reference Works” on page 3-11

“Using Model Reference” on page 3-12

“Configuring Targets to Use Model Reference” on page 3-14

Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
then only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• The Top model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models are blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

3-11

3 Project Generator

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop software detects that
your model contains referenced models. Simulink software generates code for
the referenced models and uses the generated code to build shared library files
for updating the model diagram and simulation. It also creates an executable
(.mex file) for each reference model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation
Real-Time Workshop software requires executables to generate code from
models. If you have not simulated your model at least once, Real-Time
Workshop software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, the software calls make_rtw on
the top model, linking to all the library files it created for the associated
referenced models.

Using Model Reference
With few limitations or restrictions, Embedded IDE Link software provides
full support for generating code from models that use model reference.

Build Action Setting
The most important requirement for using model reference with the Analog
Devices targets is that you must set the Build action (select Configuration
Parameters > Embedded IDE Link) for all models referred to in the
simulation to Archive_library.

3-12

Model Reference

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

Selecting the Archive_library setting removes the following options from
the dialog box:

• Interrupt overrun notification method

• Compiler options string

• Linker options string

• System stack size (MAUs)

• Profile real-time execution

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. You must configure all the Target Preferences
blocks for the same processor.

The referenced models need target preferences blocks to provide information
about which compiler and which archiver to use. Without these blocks, the
compile and archive processes do not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the

3-13

3 Project Generator

necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded IDE Link software does not allow you to use
the following blocks or S-functions in reference models:

• No noninlined S-functions

• None of the following blocks:

- Custom Board (Target Preferences)

- Memory Allocate

- Memory Copy

- Idle Task

- Hardware Interrupt for SHARC, TigerSHARC, or Blackfin DSPs

Configuring Targets to Use Model Reference
When you create models to use in Model Referencing, keep in mind the
following considerations:

• Your model must use a system target file derived from the ERT or GRT
targets files.

• When you generate code from a model that references other models, you
must configure the top-level model and the referenced models for the same
system target file.

• Real-Time Workshop software builds and Embedded IDE Link software do
not support external mode in model reference. If you select the external
mode option, it is ignored during code generation.

• Your TMF must support use of the shared utilities directory, as described
in Supporting Shared Utility Directories in the Build Process in the
Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about

3-14

Model Reference

setting this option, refer to ModelReferenceCompliant in the online Help
system.

If you start with a model that was created prior to MATLAB release R14SP3,
use the following command to set the ModelReferenceCompliant flag to On to
make your model compatible with model reference:

set_param(bdroot,'ModelReferenceCompliant','on')

Code that you generate from Simulink software models by using Embedded
IDE Link software automatically include the model reference capability. You
do not need to set the flag.

3-15

3 Project Generator

3-16

4

Block Reference

Block Library: idelinklib_adivdsp
(p. 4-2)

Blocks for Analog Devices
VisualDSP++

4 Block Reference

Block Library: idelinklib_adivdsp

Blackfin Hardware Interrupt Generate Interrupt Service Routine

SHARC Hardware Interrupt Generate Interrupt Service Routine

TigerSHARC Hardware Interrupt Generate Interrupt Service Routine

4-2

5

Blocks — Alphabetical List

Blackfin Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Block Library: idelinklib_adivdsp

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes that
are downstream from the this block or an Idle Task block connected
to this block. Core interrupts trigger the ISRs. System interrupts
trigger the core interrupts. In the following figure, you see the mapping
possibilities between system interrupts and core interrupts.

Interrupts

Blackfin processors support the interrupt numbers shown in the
following table. Some Blackfin processors do not support all of the
system interrupts.

Interrupt
Description

Valid Range in Embedded IDE Link Software

Core interrupt
numbers

7 to 14

System interrupt
numbers

0 to 31 (The upper end value depends on the
processor. May be less than 31.)

5-2

Blackfin Hardware Interrupt

Dialog
Box

Core interrupt numbers
Specify a vector of one or more interrupt numbers for the interrupt
service routines (ISR) to install. The valid range is 7 to 14, where
7 through 13 are hardware driven, and 14 is software driven. Core
interrupts numbered 0 to 6 are reserved and cannot be entered in
this field. Each interrupt value must be unique.

The width of the block output signal corresponds to the number of
interrupt values you specify in this field. Triggering of each ISR
depends on the core interrupt value, the system interrupt value,
and the preemption flag you enter for each interrupt. These three
values define how the code and processor respond to interrupts
during asynchronous scheduler operations.

5-3

Blackfin Hardware Interrupt

System interrupt numbers
System interrupt numbers identify system interrupts to map
to core interrupts. Enter one or more values as a vector. Each
interrupt value must be unique. The valid range is generally 0
through 31, although the range depends on your processor. Some
processors do not support the full range of 32 system interrupts.
Embedded IDE Link software does not test for valid system
interrupt values. You must verify that your values are valid for
your processor. To use asynchronous scheduling, you must specify
a value for at least one system interrupt number.

The block maps the first interrupt value in this field to the first
core interrupt value in Core interrupt numbers, it maps the
second system interrupt value to the second core interrupt value,
and so on until it has mapped all of the system interrupt values
to core interrupt values. You cannot map more than one system
interrupt to the same core interrupt. You must enter the same
number of system interrupts as core interrupts.

When you trigger one of the system interrupts in this field, the
block triggers the ISR associated with the core interrupt that is
mapped to the system interrupt.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model
task priority specifies the priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Proper code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
ensure absolute time integrity when the asynchronous task must
obtain real time from its base rate or its caller. Typically, assign
priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

5-4

Blackfin Hardware Interrupt

Preemption flags preemptible – 1, non-preemptible – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To control this preemption, use the preemption flags to
specify whether an interrupt can be preempted.

• Entering 1 indicates the corresponding core interrupt can be
preempted.

• Entering 0 indicates the corresponding interrupt cannot be
preempted.

When Core interrupt numbers contains more than one
interrupt priority, you can assign different preemption flags to
each interrupt by entering a vector of preemption flag values
that correspond to the order of the interrupts in Core interrupt
numbers. If Core interrupt numbers contains more than one
interrupt, and you enter only one flag value in this field, that
status applies to all interrupts.

For example, the default settings [0 1]indicate that the interrupt
with value 10 in Core interrupt numbers is not preemptible
and the value 12 interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input
port to the Hardware Interrupt block. This port receives input
only during simulation. Connect one or more simulated interrupt
sources to the simulation input.

5-5

SHARC Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Block Library: idelinklib_adivdsp

Description Create interrupt service routines (ISR) in the software generated by
the build process. When you incorporate this block in your model,
code generation results in ISRs on the processor that either run the
processes that are downstream from this block or trigger an Idle Task
block connected to this block.

Dialog
Box

5-6

SHARC Hardware Interrupt

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The valid ranges are 8-36 and 38-40.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. The values in this
field and the preemption flag entries in Preemption flags:
preemptible-1, non-preemptible-0 define how the code and
processor handle interrupts during asynchronous scheduler
operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model
task priority specifies the priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Proper code generation requires rate transition code (refer to Rate
Transitions and Asynchronous Blocks in the Real-Time Workshop
documentation). The task priority values ensure absolute time
integrity when the asynchronous task must obtain real time from
its base rate or its caller. Typically, assign priorities for these
asynchronous tasks that are higher than the priorities assigned
to periodic tasks.

Preemption flags preemptible – 1, non-preemptible – 0
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

• Entering 1 indicates that the interrupt can be preempted.

• Entering 0 indicates the interrupt cannot be preempted.

When Interrupt numbers contains more than one interrupt
value, you can assign different preemption flags to each interrupt
by entering a vector of flag values to correspond to the order of
the interrupts in Interrupt numbers. If Interrupt numbers

5-7

SHARC Hardware Interrupt

contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 18 in
Interrupt numbers is not preemptible and the priority 39
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

5-8

TigerSHARC Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Block Library: idelinklib_adivdsp

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes that
are downstream from the this block or an Idle Task block connected to
this block.

Dialog
Box

5-9

TigerSHARC Hardware Interrupt

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The valid interrupts are 2, 3, 6-9, 14-17, 22-25, 29-32, 37, 38,
41-44, 52.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. Combined with the
Simulink task priorities that you enter and the preemption
flag you enter for each interrupt, these three values define how
the code and processor handle interrupts during asynchronous
scheduler operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model
task priority specifies the priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Simulink model task priority values are required to generate
the proper rate transition code (refer to Rate Transitions and
Asynchronous Blocks in the Real-Time Workshop documentation).
The task priority values are also required to ensure absolute time
integrity when the asynchronous task needs to obtain real time
from its base rate or its caller. Typically, you assign priorities
for these asynchronous tasks that are higher than the priorities
assigned to periodic tasks.

Preemption flags preemptible – 1, non-preemptible – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of

5-10

TigerSHARC Hardware Interrupt

the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 15 in
Interrupt numbers is not preemptible and the priority 42
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

5-11

TigerSHARC Hardware Interrupt

5-12

A

Reported Limitations and
Tips

A Reported Limitations and Tips

Reported Issues
Some long-standing issues affect the Embedded IDE Link software. When you
are using adivdsp objects and methods to work with VisualDSP++ software
and supported hardware or simulators, recall the information in this section.

The latest issues in the list appear at the bottom. PIL means
“processor-in-the-loop” and is similar to hardware-in-the-loop operations.

Using 64-bit Symbols in a 64-bit Memory Section
on SHARC Processors
VisualDSP++ compiler design prevents Embedded IDE Link from generating
code the accesses 64-bit memory locations correctly. To avoid unexpected
results, do not allocate 64-bit data or symbols to 64-bit memory locations
on SHARC processors.

When 64-bit data is in 64-bit memory, the compiler generates code that
accesses the 64-bit locations as two 32-bit values. Thus, the code does not
read and write the 64-bit data correctly. It reads or writes every other 32-bit
location, returning or writing incorrect values and possibly exceeding the
allocated memory.

Refer to pp. 5-33 in the ADSP-2136x SHARC Processor Programming
Reference, revision 1.0 for a description of how the compiler treats 64-bit (long
word) data values.

A-2

B

Supported Processors

This appendix provides the details about the processors, simulators, and
software that work with Embedded IDE Link.

B Supported Processors

Supported Platforms

In this section...

“Product Features Supported by Each Processor or Family” on page B-2

“Supported Processors and Simulators” on page B-2

“Custom Board Support” on page B-3

This appendix lists the processors and simulators that work with the
latest released version of Embedded IDE Link for use with Analog Devices
VisualDSP++.

Product Features Supported by Each Processor or
Family
The following table indicates which Embedded IDE Link features are
available by processor family.

Features by Processor Family

Automation Interface
Component

Project Generator
Component Verification

Processor
Family

Debug
Mode Code Generation PIL

Real-Time
Execution
Profiling

BF52x Yes Yes Yes Yes

BF531-BF534,
BF536-BF539

Yes Yes Yes Yes

SHARC 2136x Yes Yes Yes Yes

TS20x Yes Yes Yes Yes

Supported Processors and Simulators
Embedded IDE Link has been tested on the following processors and boards
produced by ADI:

B-2

Supported Platforms

• BF52x

- ADI Simulators (BF52x)

- ADSP-BF527 EZ-KIT LITE

• BF531-BF534, BF536-BF539

- ADI Simulators (BF53x)

- ADDS-BF537-EZLITE

• SHARC 2136x

- ADI Simulators (ADSP-2136x Simulator)

- ADSP-21364 EZ-KIT LITE

- ADSP-21369 EZ-KIT LITE

• TS 20x

- ADI Simulators (ADSP-TS201 rev. 1.x/2.x Single Processor Simulator)

- ADSP-TS201S EZ-KIT LITE

Custom Board Support
You can use Embedded IDE Link with your custom board if:

• The board uses one or more of the supported processors in the preceding list.

• Your processor appears in the Processor list of the Target Preferences or
Custom Board block.

• You are able to use Analog Devices VisualDSP++ to interact with your
board/processor combination.

B-3

B Supported Processors

B-4

Index

IndexA
access properties 2-20
adivdsp 2-18
adivdsp object properties 2-26

procnum 2-25
sessionname 2-26

Analog Devices model reference 3-11
Archive_library 3-12

B
block limitations using model reference 3-14

F
functions

overloading 2-23

G
getting properties 2-22

L
link filters properties

getting 2-22
link properties

about 2-25
setting 2-22

link properties, details about 2-25
linking objects

quick reference 2-24
links

closing VisualDSP++® 2-16
details 2-25
loading files into VisualDSP++® IDE 2-9
working with your processor 2-11

M
model reference 3-11

about 3-11
Archive_library 3-12
block limitations 3-14
modelreferencecompliant flag 3-14
setting build action 3-12
target preferences blocks 3-13
using 3-12

modelreferencecompliant flag 3-14

O
object

adivdsp 2-18
object properties

about 2-24
quick reference table 2-24

objects
creating objects for VisualDSP++® IDE 2-7
introducing the objects for VisualDSP++®

IDE tutorial 2-2
selecting processors for VisualDSP++® IDE

2-6
tutorial about using Automation Interface

for VisualDSP++® IDE 2-2
overloading 2-23

P
procnum 2-25
properties

object properties 2-24
referencing directly 2-22
retrieving 2-20

function for 2-22
retrieving by direct property referencing 2-22
setting 2-20

S
sessionname 2-26
set properties 2-20

Index-1

Index

structure-like referencing 2-22

T
target preferences blocks in referenced

models 3-13
timeout

timeout 2-26

tutorials
objects for VisualDSP++® 2-2

V
VisualDSP++® IDE objects

tutorial about using 2-2

Index-2

	toc
	Getting Started
	Product Overview
	Software Structure and Components
	Automation Interface
	Project Generator
	Verification
	Processor-in-the-Loop Cosimulation
	Task Execution and Stack Usage Profiling

	Software Requirements
	Installation and Configuration

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Functions for Working with VisualDSP++ Software
	Methods for Working with adivdsp Objects in VisualDSP++ Software
	Running VisualDSP++ Software on Your Desktop — Visibility

	Running the Interactive Tutorial
	Selecting Your Session and Processor
	Querying Objects for VisualDSP++ IDE
	Loading Files into VisualDSP++ IDE
	Running the Project
	Working with Global Variables and Memory
	Working with Local Variables and Memory
	Closing Files and Projects
	Closing the Connections or Cleaning Up VisualDSP++ Software
	Tutorial Summary

	Constructing Objects
	Example — Constructor for adivdsp Objects

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Example — Setting Object Property Values at Construction

	Setting Property Values with set
	Example — Setting Object Property Values Using set

	Retrieving Properties with get
	Example — Retrieving Object Property Values Using get

	Direct Property Referencing to Set and Get Values
	Example — Direct Property Referencing in Links

	Overloaded Functions for adivdsp Objects

	adivdsp Object Properties
	Quick Reference to adivdsp Properties
	Details About adivdsp Object Properties
	procnum
	sessionname
	timeout

	Project Generator
	Introducing Project Generator
	Project Generator Tutorial
	Building the Model
	Adding the Target Preferences Block to Your Model
	Specifying Simulink Configuration Parameters for Your Model
	Setting Solver Options
	Setting Real-Time Workshop Software Options
	Setting Embedded IDE Link Options
	Creating Your Project

	Model Reference
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring Targets to Use Model Reference

	Block Reference
	Block Library: idelinklib_adivdsp

	Blocks — Alphabetical List
	Reported Limitations and Tips
	Reported Issues
	Using 64-bit Symbols in a 64-bit Memory Section on SHARC Process

	Supported Processors
	Supported Platforms
	Product Features Supported by Each Processor or Family
	Supported Processors and Simulators
	Custom Board Support

	Index

	tables
	Features by Processor Family

